Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Tissue Bank ; 23(4): 717-727, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34993730

RESUMO

This study investigated the optimum transport condition for heart tissue to recover single-cell cardiomyocytes for future in-vitro or in-vivo studies. The heart tissues were obtained from removing excessive myocardium discharged during the repair surgery of an excessive right atrial hypertrophy due to a congenital disease. The transportation temperature studied was the most used temperature (4 °C) or the conventional condition, compared to a physiological temperature(37 °C). The heart tissues were transported from the operating theatre to the lab maintained less than 30 min consistently. Single-cell isolation was enzymatically and mechanically performed using collagenase-V (160 U/mg) and proteinase-XXIV (7-14 U/mg) following the previously described protocol. The impact of temperature differences was observed by the density of cells harvested per mg tissue, cell viability, and the senescence signals, identified by the p21, p53 and caspase-9 mRNA expressions. Results the heart tissue transported at 37 °C yielded significantly higher viable cell density (p < 0.01) yielded viable cells significantly higher density (p < 0.01) than the 4 °C; 2,335 ± 849 cells per mg tissue, and 732 ± 425 cells per mg tissue, respectively. The percentage of viable cells in both groups showed no difference. Although the 37 °C group expressed the apoptosis genes such as p21, p53 and caspase9 by 2.5-, 5.41-, 5-fold respectively (p > 0.05). Nonetheless, the Nk×2.5 and MHC genes were expressed 1,7- and 3.56-fold higher than the 4 °C. and the c-Kit+ expression was 17.56-fold, however, statistically insignificant. Conclusion When needed for single-cell isolation, a heart tissue transported at 37 °C yielded higher cell density per mg tissue compared to at 4 °C, while other indicators of gene expressions for apoptosis, cardiac structural proteins, cardiac progenitor cells showed no difference. Further investigations of the isolated cells at different temperature conditions towards their proliferation and differentiation capacities in a 3-D scaffold would be essential.


Assuntos
Miócitos Cardíacos , Proteína Supressora de Tumor p53 , Humanos , Miócitos Cardíacos/fisiologia , Temperatura , Proteína Supressora de Tumor p53/metabolismo , Miocárdio , Apoptose
2.
Cell Tissue Bank ; 23(3): 489-497, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34709486

RESUMO

Cardiovascular disease is the second highest cause of death across the globe. Myocardial infarction is one of the heart diseases that cause permanent impairment of the heart wall leads to heart failure. Cellular therapy might give hope to regenerate the damaged myocardium. Single cells isolated from an excess heart tissue obtained from the correction of the right ventricular hypertrophy in patients with Tetralogy of Fallot for future heart study were investigated. METHODS: Once resected, the heart tissues were transported at 37 °C, in Dulbecco's Modified Eagle's medium/ DMEM (4.5 g.L-1, antibiotic-antimycotic 3x, PRP10% (v/v)), to reach the lab within 30 min, weighted and grouped into less than 500 mg and more than 1000 mg (n = 4). Each sample was digested with 250 U.mL-1 Collagenase type V and 4U.mL-1 Proteinase XXIV in the MACS™ C-tube (Milltenyi, Germany), then dissociated using the MACS™ Octo Dissociator with Heater (Milltenyi, Germany) for 60 min at 37 °C. RESULTS: All cells isolated were rod-shaped cells; viability was up to 90%. The cell density obtained from the 500 mg group were 4,867 ± 899 cells.mg-1 tissue weight, significantly higher compared to the 1,000 mg group; had 557 ± 490 cells.mg-1 tissue weight (mean of (n = 3) ± 95% C.l). The isolated cells were analyzed using FACs BD Flowcytometer, expressed cTnT + 13.38%, PECAM-1 + /VCAM-1- 32.25%, cKit + 7.85%, ICAM + 85.53%, indicating the cardiomyocyte progenitor cells. CONCLUSION: Cardiomyocytes taken from the wasted heart tissue might be a candidate of cardiomyocytes source to study interventions to the heart as it contained up to 13.38% cardiomyocytes, and 32.25% of cardiac progenitor cells. Moreover, perhaps when cardiac cell therapy needs autologous cardiomyocytes, less than 500 mg tissue weight can be considered as sufficient.


Assuntos
Cardiopatias Congênitas , Infarto do Miocárdio , Humanos , Miocárdio , Miócitos Cardíacos , Células-Tronco
3.
Polymers (Basel) ; 13(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578978

RESUMO

Bacterial exopolysaccharides (EPSs) are an essential group of compounds secreted by bacteria. These versatile EPSs are utilized individually or in combination with different materials for a broad range of biomedical field functions. The various applications can be explained by the vast number of derivatives with useful properties that can be controlled. This review offers insight on the current research trend of nine commonly used EPSs, their biosynthesis pathways, their characteristics, and the biomedical applications of these relevant bioproducts.

4.
Front Cell Dev Biol ; 8: 587776, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195245

RESUMO

BACKGROUND: The therapeutic capacity of mesenchymal stem cells (also known as mesenchymal stromal cells/MSCs) depends on their ability to respond to the need of the damaged tissue by secreting beneficial paracrine factors. MSCs can be genetically engineered to express certain beneficial factors. The aim of this systematic review is to compile and analyze published scientific literatures that report the use of engineered MSCs for the treatment of various diseases/conditions, to discuss the mechanisms of action, and to assess the efficacy of engineered MSC treatment. METHODS: We retrieved all published studies in PubMed/MEDLINE and Cochrane Library on July 27, 2019, without time restriction using the following keywords: "engineered MSC" and "therapy" or "manipulated MSC" and "therapy." In addition, relevant articles that were found during full text search were added. We identified 85 articles that were reviewed in this paper. RESULTS: Of the 85 articles reviewed, 51 studies reported the use of engineered MSCs to treat tumor/cancer/malignancy/metastasis, whereas the other 34 studies tested engineered MSCs in treating non-tumor conditions. Most of the studies reported the use of MSCs in animal models, with only one study reporting a trial in human subjects. Thirty nine studies showed that the expression of beneficial paracrine factors would significantly enhance the therapeutic effects of the MSCs, whereas thirty three studies showed moderate effects, and one study in humans reported no effect. The mechanisms of action for MSC-based cancer treatment include the expression of "suicide genes," induction of tumor cell apoptosis, and delivery of cytokines to induce an immune response against cancer cells. In the context of the treatment of non-cancerous diseases, the mechanism described in the reviewed papers included the expression of angiogenic, osteogenic, and growth factors. CONCLUSION: The therapeutic capacity of MSCs can be enhanced by inducing the expression of certain paracrine factors by genetic modification. Genetically engineered MSCs have been used successfully in various animal models of diseases. However, the results should be interpreted cautiously because animal models might not perfectly represent real human diseases. Therefore, further studies are needed to explore the translational potential of genetically engineered MSCs.

5.
J Orthop Surg Res ; 13(1): 266, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30352605

RESUMO

BACKGROUND: The treatment of congenital pseudoarthrosis of the tibia (CPT) remains challenging in pediatric orthopedics due to the difficulties in bone union, continuous angulation, joint stiffness, and severe limb length discrepancy. Mesenchymal stem cells (MSCs) therapy offers a complementary approach to improve the conventional surgical treatments. Although the autologous MSC treatment shows a promising strategy to promote bone healing in CPT patients, the quality of MSCs from CPT patients has not been well studied. The purpose of this study is to investigate the quality of MSCs isolated from patients with CPT. METHODS: The bone marrow-derived MSCs from the fracture site and iliac crest of six CPT patients were isolated and compared. The cumulative population doubling level (cPDL), phenotype characteristics, and trilineage differentiation potency were observed to assess the quality of both MSCs. RESULTS: There were no significant differences of the MSCs derived from the fracture site and the MSCs from the iliac crest of the subjects, in terms of cPDL, phenotype characteristics, and trilineage differentiation potency (all p > 0.05). However, MSCs from the fracture site had a higher senescence tendency than those from the iliac crest. CONCLUSION: MSC quality is not the main reason for delayed bone regeneration in those with CPT. Thus, autologous MSC is a promising source for treating CPT patients.


Assuntos
Células da Medula Óssea/patologia , Células-Tronco Mesenquimais/patologia , Pseudoartrose/congênito , Tíbia/patologia , Adolescente , Adulto , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Separação Celular/métodos , Células Cultivadas , Senescência Celular/fisiologia , Citometria de Fluxo , Humanos , Ílio/patologia , Pessoa de Meia-Idade , Osteogênese/fisiologia , Fenótipo , Pseudoartrose/patologia , Adulto Jovem
6.
Biotechnol Prog ; 34(2): 362-369, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29226613

RESUMO

The increasing application of regenerative medicine has generated a growing demand for stem cells and their derivatives. Single-use bioreactors offer an attractive platform for stem cell expansion owing to their scalability for large-scale production and feasibility of meeting clinical-grade standards. The current work evaluated the capacity of a single-use bioreactor system (1 L working volume) for expanding Meg01 cells, a megakaryocytic (MK) progenitor cell line. Oxygen supply was provided by surface aeration to minimize foaming and orbital shaking was used to promote oxygen transfer. Oxygen transfer rates (kL a) of shaking speeds 50, 100, and 125 rpm were estimated to be 0.39, 1.12, and 10.45 h-1 , respectively. Shaking speed was a critical factor for optimizing cell growth. At 50 rpm, Meg01 cells exhibited restricted growth due to insufficient mixing. A negative effect occurred when the shaking speed was increased to 125 rpm, likely caused by high hydrodynamic shear stress. The bioreactor culture achieved the highest growth profile when shaken at 100 rpm, achieving a total expansion rate up to 5.7-fold with a total cell number of 1.2 ± 0.2 × 109 cells L-1 . In addition, cells expanded using the bioreactor system could maintain their potency to differentiate following the MK lineage, as analyzed from specific surface protein and morphological similarity with the cells grown in the conventional culturing system. Our study reports the impact of operational variables such as shaking speed for growth profile and MK differentiation potential of a progenitor cell line in a single-use bioreactor. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:362-369, 2018.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Leucemia Megacarioblástica Aguda/patologia , Carbono/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Desenho de Equipamento , Humanos , Leucemia Megacarioblástica Aguda/metabolismo , Oxigênio/metabolismo , Células-Tronco/citologia
7.
Cytotechnology ; 68(6): 2211-2221, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27002966

RESUMO

The platelet is a component of blood that functions to initiate blood clotting. Abnormal platelet count and function can lead to a life-threatening condition caused by excessive bleeding. At present, platelet supply for transfusion can be obtained only from platelet donation. However, platelets cannot be stored for longer than 7 days, meaning that routine isolation is required to maintain platelet supply for transfusion. To mitigate for potential platelet shortages, several strategies have been proposed to generate platelets ex vivo. By employing both of natural and artificial approaches, several researchers have successfully generated biomaterials with characteristics similar to human-derived platelets. Their reports indicated that the biomaterials could mimic the aggregation of human-isolated platelets, further suggesting the possibility to substitute or complement human-isolated platelets. The current review summarizes the progress in ex vivo platelet production and gives a prospect for the possible approaches to achieving a feasible platelet factory, based on the Good Manufacturing Practice standards.

8.
Hum Cell ; 28(2): 65-72, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25304900

RESUMO

Introduction of a polyploidy inducer is a promising strategy to achieve a high level of polyploidization during megakaryocytic (MK) differentiation. Here, we report that a multi-kinase inhibitor, BMS-777607, is a potent polyploidy inducer for elevating high ploidy cell formation in the MK-differentiated CHRF-288-11 (CHRF) cells. Our result showed that BMS-777607 strongly inhibited cell division without affecting cell viability when detected at day 1 after treatment. As a consequence, the high ploidy (≥8N) cells were accumulated in culture for 8 days, with an increase from 16.2 to 75.2 % of the total cell population. The elevated polyploidization was accompanied by the increased expression level of MK marker, CD41 (platelet glycoprotein IIb/IIIa, GPIIb/IIIa), suggesting that BMS-777607 promoted both polyploidization and commitment of MK-differentiated CHRF cells. Platelet-like fragments (PFs) were released by mature CHRF cells. Based on a flow cytometry assay, it was found that the PFs produced from BMS-777607-treated cells tended to have larger size and higher expression of GPIIb/IIIa, a receptor for platelet adhesion. Taken together, these results suggested that BMS-777607 promoted MK differentiation of CHRF cells and increased the functional property of platelet-like fragments.


Assuntos
Aminopiridinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Poliploidia , Inibidores de Proteínas Quinases/farmacologia , Piridonas/farmacologia , Células Cultivadas , Humanos , Células K562 , Glicoproteína IIb da Membrana de Plaquetas , Estimulação Química
9.
Cell Mol Biol Lett ; 19(4): 590-600, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25338769

RESUMO

Reactive oxygen species (ROS) have been proven to be important activators for various cellular activities, including cell differentiation. Several reports showed the necessity of ROS during cell differentiation of the megakaryocytic (MK) lineage. In this study, we employed near ultraviolet (near-UV) irradiation to generate endogenous oxidative stress in an MK differentiation process of K562 cells with phorbol 12-myristate 13-acetate (PMA) induction. A significant increase in the intracellular ROS level was detected on day 1 after near-UV irradiation. In the initial stage of differentiation, a shifted fraction of G1 and G2 phase cells was obtained using near-UV irradiation, giving an increased percentage of G2 phase cells (up from 31.1 to 68.7%). The near-UV irradiation-induced upregulation of the p21 gene, which is a cell cycle inhibitor, suggested that the G2 phase cells were prevented from undergoing cell division. It was found that the percentage of high ploidy (8N and 16N) cells was enhanced significantly at the later stage of the K562 cell culture with near-UV irradiation. Moreover, time-lapse analysis showed that near-UV irradiation encouraged the expression of CD41, a specific surface marker of megakaryocytes. This is the first report that the elevated oxidative stress through the near-UV irradiation promoted the MK differentiation of PMA-induced K562 cells.


Assuntos
Diferenciação Celular/efeitos da radiação , Megacariócitos/fisiologia , Estresse Oxidativo , Raios Ultravioleta , Ciclo Celular , Humanos , Células K562 , Megacariócitos/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo
10.
Exp Cell Res ; 319(14): 2205-15, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23770036

RESUMO

The human myelogenous cell line, K562 has been extensively used as a model for the study of megakaryocytic (MK) differentiation, which could be achieved by exposure to phorbol 12-myristate 13-acetate (PMA). In this study, real-time PCR analysis revealed that the expression of catalase (cat) was significantly repressed during MK differentiation of K562 cells induced by PMA. In addition, PMA increased the intracellular reactive oxygen species (ROS) concentration, suggesting that ROS was a key factor for PMA-induced differentiation. PMA-differentiated K562 cells were exposed to hydrogen peroxide (H2O2) to clarify the function of ROS during MK differentiation. Interestingly, the percentage of high-ploidy (DNA content >4N) cells with H2O2 was 34.8±2.3% at day 9, and was 70% larger than that without H2O2 (21.5±0.8%). Further, H2O2 addition during the first 3 days of PMA-induced MK differentiation had the greatest effect on polyploidization. In an effort to elucidate the mechanisms of enhanced polyploidization by H2O2, the BrdU assay clearly indicated that H2O2 suppressed the division of 4N cells into 2N cells, followed by the increased polyploidization of K562 cells. These findings suggest that the enhancement in polyploidization mediated by H2O2 is due to synergistic inhibition of cytokinesis with PMA. Although H2O2 did not increase ploidy during the MK differentiation of primary cells, we clearly observed that cat expression was repressed in both immature and mature primary MK cells, and that treatment with the antioxidant N-acetylcysteine effectively blocked and/or delayed the polyploidization of immature MK cells. Together, these findings suggest that MK cells are more sensitive to ROS levels during earlier stages of maturation.


Assuntos
Diferenciação Celular , Peróxido de Hidrogênio/farmacologia , Megacariócitos/efeitos dos fármacos , Poliploidia , Acetato de Tetradecanoilforbol/farmacologia , Catalase/genética , Catalase/metabolismo , Citocinese/efeitos dos fármacos , DNA de Neoplasias/efeitos dos fármacos , DNA de Neoplasias/metabolismo , Regulação para Baixo , Sinergismo Farmacológico , Humanos , Células K562 , Megacariócitos/citologia , Megacariócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...